MATHEMATICS APPLICATIONS

MAWA Semester 1 (Unit 3) Examination 2018

Calculator-free

Marking Key

© MAWA, 2018

Licence Agreement

This examination is Copyright but may be freely used within the school that purchases this licence.

- The items that are contained in this examination are to be used solely in the school for which they are purchased.
- They are not to be shared in any manner with a school which has not purchased their own licence.
- The items and the solutions/marking keys are to be kept confidentially and not copied or made available to
 anyone who is not a teacher at the school. Teachers may give feedback to students in the form of showing
 them how the work is marked but students are not to retain a copy of the paper or marking guide until the
 agreed release date stipulated in the purchasing agreement/licence.

The release date for this exam and marking scheme is

• the end of week 8 of term 2, 2018

Section One: Calculator-free

Question 1 (a) Solution 800 4 600 400 200 > n1 2 3 4 5 6 Marking key/mathematical behaviours Marks 1 plots 3 points • 1 plots 2 more points •

Question 1 (b)

Solution	
$T_n = 800(0.5)^{n-1}$	
Marking key/mathematical behaviours	Marks
identifies correct rate and power	1
identifies correct format with starting term	1

Question 1 (c) Solution

Solution	
Never. The values keep getting smaller and closer to zero but the values remain	ain positive
Marking key/mathematical behaviours	Marks
 identifies the sequence is never negative 	1
 provides explanation of sequence behaviour 	1

Question 2 (a)

Solution	
The values have been rounded to the nearest tenth. Some loss of accuracy has resulted	
Marking key/mathematical behaviours	Marks
indicates numbers are rounded	1

(50 Marks)

Question 2 (b)

Solution	
Which party will you vote for at the next election?	
Marking key/mathematical behaviours	Marks
identifies an appropriate question for data collection	1

Question 2 (c)

Solution

The proportion of people surveyed who supported the Orange party increased over the time of the three surveys. The percentages rose from 36.5 to 39.3 to 41.3

 Marking key/mathematical behaviours
 Marks

Marking Key/mailematical behavious	Marks
 indicates variables that are related 	1
 describes the change in voting percentages over time 	1

Question 2 (d)

Solution

The ages of the voters in all three surveys were comparable.

There were about the same numbers of females and males in each survey

The surveys were conducted in the same regions each time

Marking key/mathematical behaviours	Marks
identifies first condition	1
identifies second condition	1

Question 2 (e)

Solution	
A column graph	
Party along the horizontal axis	
Percentages along the vertical axis	
A column for each time period (different colours)	
A legend for each time period	
Titles etc	
Marking key/mathematical behaviours	Marks
 identifies an appropriate type of graph 	1
 identifies first graph feature 	1
 identifies second graph feature 	1

Question 3 (a)

Solution	
(i) The vertices represent the players	
(ii) There are no loops because there are no paths from any vertex to itself	
(iii) The graph is a digraph because there are directions on the edges	
(iv) Complete	
Marking key/mathematical behaviours	Marks
identifies significance of vertices	1
determines lack of loops	1
explains lack of loops	1
explains meaning of digraph	1
 identifies meaning of a complete graph 	1

Question 3 (b)

Solution	
K L M R P	
$\begin{bmatrix} K & \begin{bmatrix} 0 & 1 & 1 & 0 & 0 \end{bmatrix}$	
M 0 1 0 1 1	
R 1 0 0 0 0	
$\left[\begin{array}{cccc} P & \left[1 & 0 & 0 & 1 & 0 \right] \end{array}\right]$	
Marking key/mathematical behaviours	Marks
 presents labelled matrix with size 5 x 5 	1
leading 0s along the diagonal	1
other values correct	1

Question 3 (c)

Solution	
Numbers are all 0	
Players do not compete against themselves	
Marking key/mathematical behaviours	Marks
 identifies 0s on leading diagonal 	1
 explains why these numbers are 0 	4

Question 3 (d)

Solution	
Mal: By looking for the row where the elements add to the greatest total	
Marking key/mathematical behaviours	Marks
identifies the node	1
 explains relevance of greatest sum 	1

Question 4 (a)

Solution	
positive	
Marking key/mathematical behaviours	Marks
identifies direction of an association	1

Question 4 (b)

Solution

15 cents

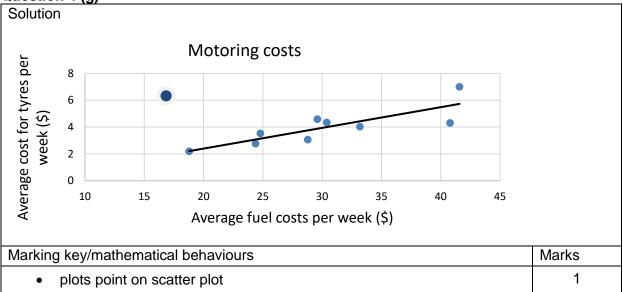
15 Cents	
Marking key/mathematical behaviours	Marks
 interprets gradient in equation of a line 	1

Question 4 (c)

Solution	
68.7%	
Marking key/mathematical behaviours	Marks
correct interpretation of the coefficient of determination	1

Question 4 (d)

Solution


0.8 It is the closest to $\sqrt{0.687}$	
Marking key/mathematical behaviours	Marks
identifies closest estimate	1
 identifies relationship between correlation coefficient and coefficient of determination 	1

Question 4 (e)

Solution	
$y = 0.15x - 0.7 = 0.15 \times 50 - 0.7 = $ \$6.80	
Marking key/mathematical behaviours	Marks
substitutes into given equation	1
determines subject of formula	1

Question 4 (f)	
Solution	
Not very reliable. Prediction is extrapolated beyond the data given.	
Marking key/mathematical behaviours	Marks
concludes prediction is not reliable	1
refers to extrapolation	1

Question 4 (g)

Question 4 (h)

Solution	
decrease	
Marking key/mathematical behaviours	Marks
interprets coefficient of determination	1

Question 5 (a)

Solution		
ELBA = 300 m	ELSA = 260 m ** shortest path	
ERBA = 450 m	ELMA = 470 m	
Marking key/mathematical behavi	ours	Marks
names two paths and pro	vides distances	1
 names two more paths and provides distances 		1
 identifies shortest path 		1

Question 5 (b)

Solution	
weighted	
Marking key/mathematical behaviours	Marks
identifies that graph is weighted	1

Question 5 (c)

Solution	
No loops	
No multiple paths between nodes	
Marking key/mathematical behaviours	Marks
identifies first feature of a simple graph	1
 identifies second feature of a simple graph 	1

Question 6 (a)

Solu	Ition						
	Years passed	1	2	3		4	
	Population	400	340	274	2	200	
Mar	Marking key/mathematical behaviours					Marks	
	determines population after 2 years					1	
	enters given data					1	

Question 6 (b)

Solution	
(i) 100	
(ii) increases by 10% each year	
Marking key/mathematical behaviours	Marks
 interprets fixed value in recurrence relation 	1
 interprets rate in recurrence relation 	1

Question 6 (c)

Solution	
$P_{n+1} = 1.1 P_n - 20$	
Marking key/mathematical behaviours	Marks
 identifies appropriate recurrence relation 	1